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SUMMARY
Bispecific T cell engagers (TCEs) have shown promise in the treatment of various cancers, but the immuno-
logical mechanism and molecular determinants of primary and acquired resistance to TCEs remain poorly
understood. Here, we identify conserved behaviors of bone marrow-residing T cells in multiple myeloma pa-
tients undergoing BCMAxCD3 TCE therapy. We show that the immune repertoire reacts to TCE therapy with
cell state-dependent clonal expansion and find evidence supporting the coupling of tumor recognition via
major histocompatibility complex class I (MHC class I), exhaustion, and clinical response. We find the abun-
dance of exhausted-like CD8+ T cell clones to be associated with clinical response failure, and we describe
loss of target epitope and MHC class I as tumor-intrinsic adaptations to TCEs. These findings advance
our understanding of the in vivo mechanism of TCE treatment in humans and provide the rationale for
predictive immune-monitoring and conditioning of the immune repertoire to guide future immunotherapy
in hematological malignancies.
INTRODUCTION

Immunotherapy has transformed the treatment landscape of

many cancers in recent years. Despite substantial success, how-

ever, durable responses with immunotherapy are usually

achieved in only a subset of patients.1,2 To improve this

outcome, we need a better understanding of the molecular

mechanisms of immunotherapy, and we need to identify predic-

tive indicators for treatment response. Single-cell characteriza-

tion of pre- and on-treatment biopsies has provided important in-

sights into the patterns of T cell expansion and the mechanisms
Cancer Cell 41, 711–725,
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underlying this process. To date, however, these studies are

limited to either easy-to-biopsy cancer types (such as mela-

noma), small numbers of patients, or focusing exclusively on

immune cell composition.3–5

T cell infiltrates in human tumors are heterogeneous in terms of

functional state and T cell receptor (TCR)-mediated tumor cell

recognition.6,7 In hematologic malignancies, such as multiple

myeloma (MM), deciphering the determinants of response to

immunotherapy is further complicated by a highly perturbed

and heterogeneous immune repertoire that differs in cell-type

composition, gene expression, clonality, and functional
April 10, 2023 ª 2023 The Authors. Published by Elsevier Inc. 711
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. The bone marrow-associated T cell repertoire responds to CD3-targeting immunotherapy with clonal expansion

(A) Design of the study in bone marrow and peripheral blood-derived samples of healthy bone marrow (BM) donors, newly diagnosed multiple myeloma (NDMM)

patients, and RRMM patients receiving TCE therapy.

(B) Swimmer plot indicating RRMM subjects’ response to treatment over time and sampling time points.

(legend continued on next page)
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properties.8,9 Immune repertoire plasticity is further influenced

by tumor load, disease stage, and therapy.10–13 Finally, the indi-

vidual patient’s bone marrow niche is heterogeneous with

respect to cellular composition and the ability to control tumor

growth.14–16 These factors make it challenging to identify and

monitor immune cells driving anti-tumoral response against he-

matological cancers.

In several cancers, such as melanoma or lung cancer, clonal

expansion of T cells drives treatment response to immune

checkpoint blockade (ICB).5,17,18 It is presently controversial

whether circulating T cells with various levels of exhaustion

markers contribute to therapeutic efficacy or merely have pre-

dictive value in immunotherapy.18,19 In murine models, T cells

with high expression of exhaustion markers appear refractory

to reinvigoration by ICB. Nevertheless, the frequency of dysfunc-

tional T cells expressing high levels of PD-1 has been shown to

correlate with clinical response to anti-PD-1 therapy in NSCLC

patients.20,21 Other mechanisms of resistance may involve im-

mune suppression by tumor-associated myeloid cells, regulato-

ry T cells (Tregs), or the expression of inhibitory immune check-

points, as well as downregulation of tumor-associated antigens

resulting in tumor escape.22,23

Bispecific T cell engagers (TCEs) are designed to overcome

some of these challenges associated with targeting tumor-asso-

ciated antigens (TAAs) by linking two antibody fragments that

recognize distinct epitopes on the TAAs and on the T cell sur-

face. By bridging the T cell and tumor cell, TCEs are believed

to trigger a cascade of events that lead to T cell activation and

subsequent tumor cell lysis. In MM, TCEs achieve high clinical

response rates.24–28 However, resistance appears to invariably

occur, and some patients fail to respond to TCE therapy, even

when TCE target antigens are highly expressed.29 Loss of target

antigen has recently been shown to be associated with acquired

resistance to TCEs,30 but it is unknown if additional immunolog-

ical mechanisms of primary and acquired resistance exist. More-

over, given the occurrence of primary response failures in some

patients, it is critical to identify predictive indicators of TCE

response to guide treatment strategies. To address these
(C) Bone marrow immune repertoire composition gradients. Each line represents

types relative to total bone marrow immune repertoire is represented by the col

according to treatment cycle.

(D and E) Cellular composition changes in multiple myeloma. (D) Proportion of CD

(E) Evaluation of CD4/CD8 ratio in dataset subset to T cells per condition. Mean ±

Bonferroni’s multiple comparison test.

(F) Comparison of TCR clonality (1/Shannon index) at diagnosis between NDM

evaluable patients, mean ± SEM and unpaired t test results shown.

(G) Uniform Manifold Approximation and Projection (UMAP) map of T cell subset

marked by color code.

(H) Longitudinal assessment of TCR clonotypes in the bone marrow of TCE therap

per individual at the indicated time points. Bottom: quantification of median clonot

was performed following downsampling to n = 1,000 cells. Boxplot showing med

determined by one-way ANOVA and Bonferroni’s multiple comparison test.

(I) TCR repertoire diversity metrics in RRMM patients receiving TCE therapy at th

SEM, whiskers indicate 10–90 percentile. Paired t test results shown.

(J) Bar chart indicating clonal space homeostasis within each TCE patient samp

Frequency cut points: small = [0;0.001], medium = [0.001;0.01], large = [0.01;1].

(K) Gini index of TCR clonal space in RRMM patients receiving TCE therapy at th

downsampled to the minimum number of T cells captured in either of the paire

percentile. Statistical significance was determined by repeated measures one-w

and Tables S1 and S2.
gaps, we have performed a comprehensive longitudinal profiling

of the bone marrow T cell repertoire and its response to the per-

turbance created by TCE treatment and integrated additional

experimental data using primary cells isolated from human pa-

tients to delineate the molecular mode of action of TCEs. Our re-

sults identify conserved behaviors of bone marrow-residing

CD4+ and CD8+ T cells in MM patients undergoing TCE therapy

and establish T cell state and tumor recognition as prerequisites

of clonal T cell expansion and clinical response in non-solid

tumors.

RESULTS

The bone marrow-associated T cell repertoire responds
to CD3-targeting immunotherapy with clonal expansion
The currently most often used T cell-engaging agents are bispe-

cific antibodies targeting an epitope on the tumor cell surface as

well as the CD3 receptor on T cells, but it is not clear how the

bonemarrow-resident and peripheral immune system communi-

cates and responds to these antibodies in humans. To under-

stand the molecular mechanisms of TCE response in MM, we

first sought to characterize the response of the bone marrow-

resident and peripheral T cell repertoire to TCE therapy.

We employed MM as a model disease because it is closely

associated with the bone marrow immune microenvironment

and serial bone marrow biopsies are available from patients on

experimental single-agent BCMAxCD3 bispecific antibody treat-

ment.28 We analyzed the transcriptome and TCR repertoire of

bone marrow-associated immune cells from a total of 30 healthy

bone marrow (HBM) donors (N = 5), newly diagnosed MM

(NDMM) patients (N = 7), and relapsed/refractory MM (RRMM)

(N = 18) patients receiving BCMAxCD3 bispecific antibody

monotherapy (Figure 1A; Tables S1 and S2). Publicly available

HBM and NDMM scRNA-seq datasets were re-analyzed within

this study using the same quality control pipeline as in-house

samples and then integrated into the final dataset.8 Longitudinal

iliac crest site-matched bone marrow biopsies and peripheral

blood draws were performed on TCE-receiving patients to allow
one biological sample (healthy donor or patient). Proportion of indicated cell

or gradient. Samples from RRMM patients receiving TCE therapy are ordered

4+, CD8+, and regulatory (Treg) T cells per condition in dataset subset to T cells.

SEM shown. Statistical significance was determined by one-way ANOVA and

M and RRMM with available scVDJ-seq data. Mean ± SEM shown. N = 21

displaying a total of 248,478 T cells annotated in 4 groups and 15 clusters and

y-receiving patients. Top: bubble plot visualization of median clonotype count

ype count at the indicated time points. N = 16 evaluable patients. Quantification

ian ± SEM, whiskers indicate full range of values. Statistical significance was

e indicated time points. N = 16 evaluable patients. Boxplot showing median ±

le analyzed at the indicated time points. Relative abundance of clones shown.

e indicated time points. N = 16 evaluable patients. Each patient time point was

d patient datasets. Boxplot showing median ± SEM, whiskers indicate 10–90

ay ANOVA and Bonferroni’s multiple comparison test. See also Figures S1–S4
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Figure 2. TCE response is driven by CD8+ effector cells

(A) Top: comparison of transcriptionally defined T cell cluster proportions in the bone marrow pre- and post-TCE therapy. N = 16 evaluable patients. Bottom:

comparison of T cell cluster proportion pre- and post-TCE therapy split by clinical response. N = 9 clinical responders (R), N = 7 clinical non-responders (NR).

(legend continued on next page)
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for analyses of the immune repertoire at the time points during

therapy (‘‘pre’’ = prior to treatment initiation; ‘‘early’’ = post cycle

1; ‘‘late’’ = post-cycle 4 or at relapse; Figure 1B). By tracing T cell

clones over time using their TCR amino acid sequence as an in-

dividual barcode, we further integrated longitudinal data with

global and individual repertoire-level analyses. After stringent

quality control and filtering, we obtained a total of 325,571

bone marrow-associated immune cells from 5 HBM, 7 NDMM,

and 18 RRMM donors (Figures S1A and S1B). T cells were

further grouped into 63,374 distinct clonotypes by matching

both a and b chain pairs and matched with peripheral blood

bulk TCRb-sequencing of patients, allowing us to track clonal lin-

eages and measure overlap and dynamics of single clones in

bone marrow and blood.

We generated an overview of global changes in cell composi-

tion of healthy and diseased bone marrow spanning MM evolu-

tion as well as treatment with TCEs (Figures 1C and S1C–S1E).

Recent studies demonstrated an early accumulation of Tregs,

followed by loss of CD8+ memory populations as early as the

smoldering myeloma stage, suggesting a loss of immunosurveil-

lance in the bone marrow niche preceding MM progression.31,32

In our cohort, RRMM patients did not demonstrate increased

Treg numbers, but increased counts of CD8+ T cells compared

with NDMM patients (Figure 1D). Taken together with a reduced

abundance of CD4+ T cells in the diseased bone marrow, this re-

sults in a decreased CD4+/CD8+ ratio in RRMM patients, a

known key cellular composition defect in MM (Figure 1E).33,34

Notably, this increase in absolute CD8+ cell counts was underlain

by an increase in clonality in RRMM compared with NDMM pa-

tients (Figures 1F, S1F, and S1G). To understand the effects of

TCE therapy on the MM bone marrow-associated T cell land-

scape, we proceeded to characterize a total of 248,478 T cells

from all 30 samples annotated in four groups (CD8+, CD4+, gd

T, and MAIT; Figures 1G and S2A–S2C). We defined 5 functional

CD4+ and 8 functional CD8+ T cell clusters based on canonical

patterns of marker expression across conditions, spanning all

canonical trajectories of naive T cells following effector-memory

fates, as well as Treg and proliferating CD8+ cells (Figures 1G

and S3A–S3C). It was recently shown that human memory

CD8+ T cells are a heterogeneous population consisting of Gran-

zyme K (GZMK)+ and GZMK– subsets.35 GZMK+ memory T cells
Comparison of TCR clonality (1/Shannon index) pre- and post-TCE therapy of CD

repeated measures two-way ANOVA and Bonferroni’s multiple comparison test.

(B–D) Longitudinal tracing of single TCR clones in TCE therapy-receiving patients.

stratified to number of cells at each time point followed by Benjamini-Hochberg

adjusted p values >0.05 shown. (B) Staggered bar chart indicating cumulative abu

TCE therapy. (C) Comparison of CD4+ and CD8+ clones (left) and all clones der

categories. Boxplot showing median ± SEM, whiskers indicate 10–90 percentile.

multiple comparison test. (D) Scatterplot indicating traceable single TCR clone

patient. T cell count in each clone is indicated by dot size.

(E) Top: heatmap of significantly expanding TCR clonotype counts and corresp

responder (R) and non-responder (NR) patients. Bottom: comparison of T cell clu

patients. Mean ± SEM shown. Statistical significance was determined by one-w

(F) Donut plots indicating phenotype composition of initially majority-naive (>50

points.

(G) Pearson distance of gene expression profiles in TCR clones on TCE treatmen

over the course of TCE treatment (pre- vs. post-treatment) was assessed for each

were compared with clones that were initially composed of >50% terminally diffe

10–90 percentile. Statistical significance was determined by one-way ANOVA an
co-express markers of T cell exhaustion and are committed to

give rise to T cells with an exhausted phenotype. Interestingly,

we found a population of GZMK+ CD8+ T cells in the bone

marrow of all analyzed RRMM patients, albeit at variable fre-

quency. Compared with other CD8+ cells in our dataset, this

cluster had significantly reduced expression of cytotoxicity

markers (PRF1, GZMB) and TCF-1 (TCF7) as well as co-expres-

sion of the exhaustion markers PDCD1 and LAG3 with the fate

regulator TOX (Figures 1G and S4A–S4C).

We next analyzed the bone marrow TCR repertoire of 16 TCE-

receiving patients with available paired data pre- and on-treat-

ment and observed a significant increase in global clonality

over the course of treatment, while the absolute number of clo-

notypes did not differ significantly across sampling time points

(Figures 1H, 1I, and S2C). Notably, using theGini index as amea-

sure of inequality in clonotype size across samples, we found

that the index significantly increases on therapy, reflecting the

emergence of more highly expanded clones in response to

TCE exposure (Figures 1J and 1K). Importantly, clinical

responder patients demonstrated significant clonal expansion

in response to TCEs, which is in line with previous studies inves-

tigating response patterns to ICB,4,5 where absolute clonotype

expansion correlated with clinical response (Figure 1K).

TCE response is driven by CD8+ effector cells
We next sought to delineate which transcriptionally defined

T cell subsets undergo clonal expansion in response to

therapy and therefore compared the proportion of each T cell

cluster before and after TCE exposure. We found that

CD4_memory_LTB T cells significantly declined in proportion

on treatment. By contrast, CD8_effector_CX3CR1 significantly

increased on treatment. Notably, the proportional increase of

CD8_effector_CX3CR1 cells was consistently found in clinical

responders and underlain by an increase in clone size, whereas

clinical non-responders appear to exhibit mixed changes

(Figure 2A).

To identify single clones that significantly change in response

to therapy, we applied a bootstrapping approach stratified to the

number of cells for each time point, accounting for sampling er-

ror of the identified TCR sequences.With this approach, wewere

able to calculate empirical p values for each TCR clone, identify
8_effector_CX3CR1 cluster shown. Statistical significance was determined by

Significant clonotype dynamics were determined by a bootstrapping approach

correction for multiple testing. All clones derived from N = 16 patients with

ndance of traceable single TCR clones with significant clonotype dynamics on

ived from clinical non-responders and responders (right) within clonal change

Statistical significance was determined by one-way ANOVA and Bonferroni’s

s and their corresponding clonal change on TCE therapy for each evaluated

onding transcriptionally defined T cell cluster in the bone marrow of clinical

ster proportions in significantly expanding TCR clonotypes. N = 16 evaluable

ay ANOVA and Tukey’s multiple comparison test.

%) CD4+/CD8+ clones (pre-therapy) that were traced between therapy time

t. The Pearson distance of gene expression profiles ((1- Pearson correlation)/2)

TCR clone. Clones that were initially composed of >50%naive CD4+/CD8+ cells

rentiated CD4+/CD8+ cells. Boxplot showing median ± SEM, whiskers indicate

d Bonferroni’s multiple comparison test. See also Figures S5–S7.
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Figure 3. The abundance of clonal exhausted-like T cells predicts response to TCE therapy

(A) Left: UMAP map of subclustered T cells overlaid by clone size of clonotypes found in the TCE cohort. Relative abundance of clones in distinct sizes as

indicated by the color-coded legend. Frequency cut points: rare = [0;0.0001], small = [0.0001;0.001], medium = [0.001;0.01], large = [0.01;1]. Right: comparison of

(legend continued on next page)
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clones with significant fold change between time points, and

define categories of clonal changes (Figures 2B–2D and S5).

We then characterized the transcriptional phenotype associated

with each of these categories and compared differential changes

between them. We identified T cell clones that significantly

expanded or contracted on therapy, although the frequency of

most clones remained constant over time, suggesting that a

generally stable bone marrow TCR repertoire responds to TCE

exposure with clonal changes in some, but not all, T cell subsets

(Figures 2B and 2C). Clonotypes undergoing empirically signifi-

cant clonal changes were enriched for CD8+ T cells. Specifically,

and reflective of their proportional change on therapy (Figure 2A),

single TCR clones demonstrating relevant clone expansion

were significantly enriched for CD8_effector_CX3CR1 T cells

(Figures 2D and 2E).

The observed increase of effector CD8+ cells upon TCE ther-

apy might be further explained by homing of differentiated cells

from the periphery. However, the extent to which the peripheral

immune system contributes novel effector T cells to local can-

cer-affected compartments such as the bone marrow remains

ill-understood. In addition, both hematological malignancies

and immunotherapies perturb this communication. We therefore

performed deep VDJ-seq on matched bone marrow and periph-

eral blood samples of TCE patients and found an increase in the

fraction of clonotypes overlapping between bone marrow and

peripheral blood post-therapy, but not pre-therapy (Figures S6,

S7A, and S7B). Furthermore, most clonotypes that we found to

be expanded upon treatment in the bone marrow could also

be detected in peripheral blood and vice versa, but not all con-

tracted clonotypes were found in both compartments, likely fall-

ing below the limit of detection or binomial sampling probability
expanded clonotypes between CD8_effector_CX3CR1 and other transcriptiona

Statistical significance was determined by one-way ANOVA and Bonferroni’s mu

(B) Dot plot of top 10 clonal TCRs by clone size in all RRMMpatients before treatm

responders (NR) (n = 7) were pooled for analysis. Phenotype distribution of each

subject of each derived TCR clone is indicated.

(C) Comparison of pre-existent frequency of each transcriptionally defined T cell c

NR (n = 7) to anti-BCMA TCE therapy. Mean ± SEM shown. Statistical significa

son test.

(D) Correlation between pre-existent abundance of CD8_exhausted-like_TOX clo

(N = 16). Patients with ongoing responses were included in the analysis using th

(E) Kaplan-Meier survival analysis shown in TCE-treated patients (N = 16) stratifie

bonemarrow of anti-BCMA TCE-treated patients (N = 16). Progression-free surviv

curves. All censored patients (n = 4) demonstrated ongoing response before the

(F) UMAPmap of subclustered T cells overlaid by a density gradient indicating loca

exclusive clonotypes pre-therapy; persisting TCRpre-post, persisting clonotypes fo

(G) Proportion of time point-exclusive and persisting clones in the bone marrow

Boxplot showing median ± SEM, whiskers indicate full range of values. Statistic

comparison test.

(H) Volcano plot depicting differential gene expression between TCR clones that a

pre-therapy (excluded). p values adjusted by Benjamini-Hochberg correction for

(I) Design of the study in bone marrow and peripheral blood-derived samples of

(J) Swimmer plot indicating RRMM subjects’ response to treatment over time an

(K) UMAP map of subclustered T cells. A total of 14,673 T cells from N = 9 pati

clusters, and marked by color code.

(L) Comparison of pre-existent clonotype frequency for each transcriptionally defi

BCMA CAR-T cell therapy. Mean ± SEM shown. Statistical significance was det

(M) Correlation between pre-existent abundance of CD8_exhausted-like_TOX T

treated patients (n = 9). Linear regression shown.

(N) Kaplan-Meier survival analysis shown in TCE-treated patients (N = 16) stratifi

marrow of anti-BCMACAR-T cell-treated patients (N = 9). PFS shown. Log rank (M
upon contraction (Figures S7C and S7D). Although this experi-

mental approach cannot discriminate if this is a result of active

homing of T cells or increased inter-compartmental communica-

tion facilitated by TCE effects, these findings are consistent with

the prior notion in solid oncology that T cells expanding in the pe-

riphery could serve as a pool of tumor-homing T cells.17

We hypothesized that, in addition to clonal expansion or

homing of pre-existing clones, the increased abundance of

effector CD8+ T cells in TCE-treated patients might be the

result of an induced phenotypic shift of naive T cells to effector

states. As a result of clonal expansion and differentiation, how-

ever, TCR clonotypes co-exist at different states at the same

time, resulting in transcriptionally heterogeneous, but related

populations sharing the same TCR. Therefore, to test our hy-

pothesis, we mapped the phenotype composition of all pre-ex-

isting majority-naive (>50%) T cell clones (n = 95) over time

(Figures 2F and 2G). We found that after therapy, initially naive

CD8+ T clones were found in effector and memory clusters,

while initially naive T cells were enriched for memory and

Treg states (Figure 2F). Transcriptional change between cells

of the same clonotype can indicate differentiation or phenotype

diversification of that clonotype. For each T cell clone, we

therefore computed the Pearson distances between the tran-

scriptional profiles before and after therapy. We observed a

significantly increased transcriptome distance over time in

CD8+ T cell clones that were majority-naive before treatment

start, when compared with terminally differentiated CD8+

T cell clones (Figures 2G and S7E). This likely results in the

assignment of progeny cells of initially naive T cell clones to

multiple transcriptional clusters post-therapy (Figure 2F).

Conversely, we did not detect significant differences in the
lly defined T cell clusters. N = 16 evaluable patients. Mean ± SEM shown.

ltiple comparison test.

ent with TCEs. All T cell clonotypes from clinical responders (R), (n = 9) and non-

clonotype into specified cell subsets is marked by color code. Clone size and

luster in the clonal bone marrow T cell repertoire (>0.01) of clinical R (n = 9) and

nce was determined by two-way ANOVA and Bonferroni’s multiple compari-

nal T cells in the bone marrow and duration of response in TCE-treated patients

e respective last PFS follow-up time point. Linear regression shown.

d by pre-existent abundance of CD8_exhausted-like_TOX clonal T cells in the

al (PFS) shown. Log rank (Mantel-Cox) test was used for comparison of survival

end of the study.

tion and abundance of highly clonal TCRs (frequency > 0.01): exclusive TCRpre,

und throughout therapy; exclusive TCRpost, exclusive clonotypes post-therapy.

with CD8_effector_CX3CR1 (top) and CD8_naive_NELL2 (bottom) phenotype.

al significance was determined by one-way ANOVA and Bonferroni’s multiple

re persisting on-therapy (persisting) and TCR clones that are exclusively found

multiple testing are shown.

RRMM patients receiving anti-BCMA CAR-T cell therapy.

d sampling time points.

ents were reference mapped to in vivo dataset (Figures 1–4), annotated in 15

ned T cell cluster in the bone marrow of clinical R (n = 6) and NR (n = 3) to anti-

ermined by two-way ANOVA and Bonferroni’s multiple comparison test.

cells in the bone marrow and duration of response in anti-BCMA CAR-T cell-

ed by pre-existent abundance of CD8_exhausted-like_TOX T cells in the bone

antel-Cox) test was used for comparison of survival curves. See also Figure S8.
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Figure 4. Activation of naive T cells by TCEs requires MHC class I interaction

(A) Experimental overview.

(B) UMAP map of subclustered T cells. A total of 25,312 T cells were reference mapped to the in vivo dataset (Figures 1–3), annotated in 15 clusters, and marked

by color code.

(C) Cell counts at T7 normalized to T0 input cell count. Primary human bone marrow-derived T cells and autologous malignant plasma cells isolated from N = 5

RRMMpatients. Mean ± SEM shown. Statistical significance was determined by repeatedmeasures one-way ANOVA and Bonferroni’smultiple comparison test.

(D–G) Assessment of differential clonotype expansion between experimental conditions. The frequencies of all TCE-reactive clones in each experimental

condition after downsampling to the minimum of cells detected in all conditions were matched to the T0 frequency of each clone as baseline to compute

condition-dependent clonal expansion. Each clonotype was then assigned its baseline phenotype from T0 transcriptional profiling.

(D) Left: clonotype frequencies of persisting T cell clonotypes from pre- to post-treatment. Cell subsets are indicated by the color-coded legend. Right: donut

plots highlighting composition of top 10 expanding clones in response to TCEs, viral peptide library (CEFT), TCE +MHC class I blockade (TCE+aMHC-I) or T cells

only control. Cell subsets are indicated by the color-coded legend.

(legend continued on next page)
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Pearson distances of initially naive compared with terminally

differentiated CD4+ T cell clones.

The abundance of exhausted-like T cell clones is
associated with clinical response failure
TCE therapies in MM are currently being investigated in experi-

mental clinical trials, and one BCMAxCD3 bispecific antibody

was recently approved for treatment inRRMMbyboth the Federal

Drug Administration and EuropeanMedical Agencies.36–46 So far,

no predictivemarkers of response to TCE therapy have been pro-

posed. Our previous data suggest that an effective TCE response

by T cells is dependent on clonal expansion of CD8 effector cells,

which together represent the largest clones inour TCE-treatedpa-

tient cohort (Figure 3A). We therefore hypothesized that a bone

marrow T cell landscape dominated by large TCE-receptive

T cell clones of the CD8_effector_CX3CR1 phenotype facilitates

clinical response, whereas the preponderance of exhausted

T cell clonesmight characterize a bonemarrow immune repertoire

that is unable to generate sufficient TCE-sensitive T cells and

consequently fails to respond to TCEs. Indeed, when performing

ameta-analysis of the full RNA/TCR-seqdatasetbydetachingclo-

notype information from the individual and integrating the clonality

and corresponding phenotype of all evaluated TCRs before treat-

ment, we found that of the top T cell clones in clinical responders,

mostwereenriched foreffector states.Bycontrast, clonesderived

from non-responder patients were predominantly assigned to

the CD8_exhausted-like_TOX cluster before therapy initiation

(Figures 3B and S8A).

GZMK+ CD8+ exhausted T cells in NDMM and in older popu-

lations have been shown to be associated with rapid disease

progression in NDMM and inflammaging, respectively.47,48

Pre-existing exhausted-like CD8+ T cells contributed to the

clonal TCR repertoire of non-responder patients (Figure 3B).

Moreover, the proportion of pre-existing exhausted-like CD8+

clones before therapy start was significantly increased in non-

responder vs. responder patients. Conversely, the frequency

of clonotypes assigned to the CD8_effector_CX3CR1 and

CD8_effector_TYROBP clusters was significantly decreased in

non-responder vs. responder patients (Figure 3C). The fre-

quency of CD8_exhausted_like_TOX clonotypes was further

correlated with progression-free survival in our study cohort

(Figures 3D and 3E). Taken together, these data reveal the asso-

ciation of pre-existing T cell exhaustion and clonal expansion

capacity with clinical response to TCEs.

As T cell exhaustion is characterized by the progressive loss of

T cell function and can culminate in the physical deletion of the

responding cells, we evaluated whether pre-existent ex-

hausted-like T cells are cleared by chronic TCE exposure. To
(E) Clonal expansion of identical TCR clones in response to TCE ± MHC class

conditions. Mean logFC ± SEM and paired t test results shown.

(F) Clonal expansion of indicated T cell subsets in response to TCE treatment acc

conditions. Mean ± SEM shown. Statistical significance was determined by one-

(G) Relative abundance of cells in identical TCR clones in response to TCE ± M

significance was determined by one-way ANOVA and Dunnett’s multiple compa

(H) Aggregation of cell-individual fate maps into a cluster-level fate map using a pa

scVelo algorithm. Terminal states indicated.

(I) Lineage tracing of representative TCE-reactive TCR clones following compute

(J) Relative abundance of TCR clones following mode of response 1 (naive-to

expansion) in response to TCE treatment. Data for n = 16 evaluable patients sho
assess this, we generated a high-dimensional map that inte-

grates phenotype, clonotype, and compartment dynamics

of all TCE-treated patients across non-inferred treatment

time points (Figures 3F and 3G). We found that most large

CD8_effector_CX3CR1 clones were persisting throughout ther-

apy, in line with their pronounced clonal expansion. In contrast,

naive clones were exclusively enriched before and on-therapy,

suggesting clonotype loss of pre-existent naive clones as

well as detection of novel clones from peripheral blood. Alterna-

tively, naive clones tend to be very small in clone size and

therefore more infrequent to detect. Interestingly, a large fraction

of CD8_exhausted-like_TOX clonotypes were still detected

throughout treatment, although clonal expansion of these clones

in response to TCEs wasminimal (Figures 3G and 2E). In line with

these results, differential gene expression analysis of persisting

compared with excluded clones revealedmarkers of cytotoxicity

(GZMB, GNLY) as well as CCL4 to be enriched in persisting

clones, while excluded clones exhibited increased expression

of IL7R and LTB, which are consistent with a memory-like

phenotype (Figures 3H and S8B).

To assess if the abundance of pre-existing exhausted-like

CD8+ T cell clones is associated with response to other

BCMA-targeted immunotherapies, we performed scRNA-seq

on bone marrow-resident T cells of nine RRMM patients

receiving anti-BCMA CAR-T cell therapy (Figures 3I and 3J).

We reference mapped these data to our BCMAxCD3-TCE in vivo

clustering to allow for identical definitions of transcriptional clus-

ters (Figure 3K), but we did not find any prognostically relevant

association of exhausted-like CD8+ T cells in these patients

(Figures 3L–3N). This suggests that our prediction marker is spe-

cific to active immunotherapies, such as bispecific TCEs.

Activation of CD8+ T cells by TCEs is amplified by MHC
class I:TCR co-signaling
Current TCE designs target the T cell surface glycoprotein CD3

epsilon chain. Response to TCEs is thought to be independent

of tumor recognition and T cell state. However, we hypothesized

that the pronounced clonal expansion and effector differentia-

tion we observed to be induced by TCEs in vivo likely require

additional canonical T cell activation signals.

To decipher the immunological mode of action of TCEs, we

performed an in vitro bone marrow co-culture of primary human

bone marrow-derived T cells and autologous malignant plasma

cells isolated from RRMM patients treated with functional

BCMAxCD3 TCEs (Figures 4A and S9A). CD138+ malignant

plasma cells and CD3+ T cells from bone marrow aspirates

were isolated by fluorescence-activated cell sorting and co-

cultured for 7 days in the presence of functional BCMAxCD3
I blockade from T0 to T7. Each dot represents a TCR clone detected in both

ording to phenotype. Each dot represents a TCR clone detected under the TCE

way ANOVA and Bonferroni’s multiple comparison test.

HC class I blockade or T cells only control. Mean ± SEM shown. Statistical

rison test. Cell subsets color coded as above.

rtition-based graph abstraction with directed edges as computed by CellRank

d trajectories on UMAP from (H).

-effector trajectory) or mode of response 2 (differentiated effector + clonal

wn. See also Figures S9–S11.
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TCEs. A viral epitope library (CEFT) encompassing 27 major

histocompatibility complex class I (MHC class I)-presented

peptides derived from Clostridium tetani, Epstein-Barr virus

(EBV/HHV-4), human cytomegalovirus (CMV/HHV-5), and influ-

enza Awas used to distinguish virus-reactive TCRs.We included

an established antibody to block interaction with MHC class I

molecules and therefore malignant plasma cell recognition by

CD8+ T cells.19 We thereby hoped to address if TCE-induced

expansion and differentiation is co-opted in clones at the time

of MM disease progression or acquired due to simultaneous

TCE binding and antigen recognition. To allow single-cell

readout of the assay, we performed combined scRNA/VDJ-

seq at baseline (T0) followed by bulk TCR-seq at the endpoint

(T7 = 7 days) to detect clonotypes post-assay and link their sin-

gle-clone expansion in each condition to their pre-assay pheno-

type by using the highly variable CDR3 amino acid sequence as a

unique identifier of each T cell clone (Figures 4A and S9B–S9D).

A total of 25,312 T cells were reference-mapped to the patient

in vivo dataset (Figure 1G), and cells were assigned to the iden-

tical 15 functional T cell clusters to allow translational analysis

(Figure 4B). As expected, we observed considerable expansion

of T cells when co-cultured with malignant plasma cells and

BCMAxCD3 TCEs. Cell counts at T7 normalized to the T0 base-

line further revealed that clonal expansion was significantly

reduced by MHC class I blockade (Figure 4C). We next

matched the frequencies of all TCE-reactive clones in each

experimental condition after downsampling to the minimum of

cells detected in all conditions to the T0 frequency of each clone

as baseline to compute condition-dependent clonal expansion.

By discriminating TCE-induced expansion from expansion trig-

gered by the viral epitope library and correcting for unspecific

baseline expansion, we defined TCE-reactive [log2FC (ETCE-

ECEFT-ET cells only) > 1] and virus-reactive [log2FC (ECEFT-ETCE-

ET cells only) > 1] TCRs (Figures 4D and 4E). Each clonotype was

then assigned its baseline phenotype from T0 transcriptional

profiling. In line with the in vivo data, we found that the

top 10% of TCE-responsive clonotypes demonstrated a pheno-

type within the cytotoxic-effector axis, whereas virus-reactive

TCRs were mainly enriched for effector memory CD8+ T cells

(Figure 4D). Notably, the expansion of TCE-reactive TCRs was

significantly reduced by MHC class I blockade, reproducing

the decrease in global T cell count in the assay and suggestive

of the need for some TCE-reactive T cell subsets to receive a

second activating signal via MHC class I:TCR recognition

(Figure 4E).

We further found significant differences in the magnitude of

TCE-induced expansion in the CD8+ compartment. Specifically,

CD8_effector_ZEB2 and CD8_effector_CX3CR1 T cells demon-

strated more pronounced TCE-induced clonal expansion than

other CD8+ transcriptional clusters, while we observed contrac-

tion of CD8_exhausted-like-TOX T cells upon TCE treatment,

which was in line with our in vivo findings (Figure 4F). Particularly,

MHC class I blockade was effective in reducing clonal expansion

in all effector cell subsets, including CD8_effector_CX3CR1

T cells, which we found to drive response in vivo (Figure 4G).

Interestingly, we could not detect any initially naive CD8+ T cell

clones in the MHC class I blockade condition, suggesting that

MHC class I-mediated signaling might only be required for

those clones that are in a naive state, and that the expansion
720 Cancer Cell 41, 711–725, April 10, 2023
of T cells we observed in the MHC class I blockade condition

is due to clones that are already of the effector phenotype

(Figure S9E).

Our assay allows for the detection and tracing of virtually all

single T cells thatmake up a given T cell clonotype in each exper-

imental condition. However, transcriptional information of T cells

post-assay was not available and would likely be not fully reflec-

tive of T cell biology due to the in vitro design of the assay. We

therefore sought to infer conserved patterns of response to

TCEs using fate mapping.

Current methods to infer trajectories from scRNA-seq data are

largely limited to datasets of embryonic development because

they require an a priori knowledge of developmental direction.

To apply these methods for our data, we considered tissue-resi-

dent T cells as mostly terminally differentiated. We employed

CellRank for single-cell fate mapping and adapted this method

for the combined scRNA/VDJ-seq data.49 With this approach,

we inferred the trajectories of TCE-responsive T cells and deter-

mined if responsive clones are fate determined or if they exhibit

phenotype plasticity that would enable state changes upon TCE

exposure. We found that the projected velocities of CD8+ T cells

mostly converge to effector/memory states as well as states with

a high expression of the dysfunctional gene module signature

(Figures 3H, 3I, and S10A–S10C). We next inferred pseudotime

along with the initial and terminal states probabilities and

identified five cellular macrostates. (Figures S10D and S10E).

By employing a modified STEMNET approach, which was

initially designed to define the multilineage potential of stem

cells, we arranged all T cells according to fate probabilities to-

ward these macrostates.50 Importantly, CD8_exhausted-

like_TOX and CD8_EM_GZMK cells (as identified by the shared

transcriptional definition of both (in vivo/in vitro) datasets)

showed almost-exclusive commitment to the CD8_exhausted-

like_TOX macrostate, whereas other cells displayed higher

heterogeneity (Figure S10E). The top driver genes that defined

the CD8_exhausted-like_TOX macrostates in latent time along

individual trajectories included the induced transcription of

BTG1, which was recently shown to be a key factor of T cell

quiescence, as well as SRGN and the proapoptotic PMAIP1

gene (Figure S10F).51

By single-clone lineage tracing of experimentally validated

TCE-responsive T cells, we found two principal modes of TCE

response (MoR) on a cellular level (Figures 4I and 4J). First,

T cell clones in an initially naive state followed an effector-memory

trajectory in line with our findings described in Figure 2, with prog-

eny ultimately found in the CD8+ effector macrostates (MoR 1).

Second, T cell clones that were already committed to an effector

state at baseline remained in this transcriptional state over latent

time (MoR 2). However, these clones displayed pronounced

clonal expansion in line with our in vivo observations (Figures 2A

and 2E). We next quantified the proportion of both MoR for

each of the patients studied in our cohort. In line with our previous

data, the proportion of cells likely to follow MoR 2 (i.e., clonal

expansion without state change of effector CD8+ cells) appeared

to outweigh the proportion of cells likely to follow MoR (i.e., naive

CD8+ cells undergoing effector differentiation as first response to

TCEs) in most patients (Figure 4J). However, as the MoR compo-

sition significantly varied between individuals, we have not de-

tected a statistically significant association with clinical response.
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Based on these results, we propose that the immunological

mode of action of TCE therapy is dependent on the current state

of a given T cell. This initial T cell state predisposes the observed

distinct degrees of clonal expansion and exhaustion upon TCE

exposure. Furthermore, TCE mode of action involves effector

differentiation without marked clonal expansion of a limited

amount of previously naive T cells, which may be dependent

on MHC class I:TCR co-stimulatory signaling.

We propose that the abundance of clonal exhausted-like

CD8+ T cell clones in the bone marrow of TCE-receiving pa-

tients indicates a higher probability of relapse. Because we

found that MHC class I interaction with tumor cells amplified

overall T cell response to TCEs in vitro by functional recruitment

and priming of naive T cell clones, we hypothesized that loss of

MHC class I might be a tumor-intrinsic mechanism of acquired

resistance in addition to the previously described loss of target

epitope expression. To test this, we performed cell-cell interac-

tion analyses in all malignant plasma cells isolated from pa-

tients receiving therapy (Figure S11A). We found significant in-

teractions of malignant plasma cells with immune cells via

HLA-C on therapy (Figure S11B). To quantify the association

between a given time point and the expression of ligand and re-

ceptor genes on MM cells, we utilized a random forest classi-

fier, a well-established machine learning technique. Based on

their importance value for the classification, we identified

more MHC class I (HLA-E, HLA-C) and class II genes (CD74)

as well as the transcript of the TCE target BCMA (TNFRSF17)

as relevant plasma cell surface proteins that are regulated

in response to TCE treatment (Figures S11C and S11D).

We confirmed that loss of BCMA or MHC class I surface

expression on malignant plasma cells occurred in some

clinical non-responder patients at relapse by flow cytometry

(Figures S11D–S11F).

Taken together, these findings demonstrate two modes of ac-

tion of bispecific TCE treatment in multiple myeloma: the prefer-

ential expansion of specific transcriptionally defined T cell clones

upon stimulation as well as differentiation and MHC class

I-dependent priming of naive T cells. Correspondingly, we

describe the loss of MHC receptor molecules as a potential

mechanism of TCE-mediated tumor immune escape beyond

loss the target antigen.52 Using this mechanism, malignant cells

might escape the additional immune pressure of MHC class

I-dependent T cell responses.

DISCUSSION

Advancing cancer immunotherapies requires a more refined

understanding of their molecular mechanisms and the path-

ways that give rise to resistance to these treatments. Such in-

formation will not only inform the development of modified im-

munotherapies but also provide guidance for future treatment

strategies. Here, we examined the impact of TCEs on MM pa-

tients by performing a longitudinal interrogation of T cells in the

peripheral blood and bone marrow of MM patients, coupled

with analysis of expanded TCR clonotypes. From these data,

we observed that response to TCEs in MM largely results

from and is determined by the clonal expansion of a repertoire

of pre-existing T cell clones. Our study provides a resource of

the diseased and perturbed human T cell repertoire and its
response to immunotherapy. We present a map of a highly

plastic bone marrow immune landscape that is associated

with significant potential for T cell expansion and links the un-

expectedly high response of adaptive immunotherapy in

multi-refractory hematological malignancies to repertoire

fitness. By demonstrating the mechanism of TCE treatment in

humans as well as specific mechanisms of immune evasion,

we provide the rationale for predictive immune monitoring

and conditioning of the immune repertoire to guide future

immunotherapy approaches.

Even though TCE therapy was administered in an ongoing

phase I clinical trial (NCT03269136), we were able to confirm

that early T cell expansion detected in our study led to ongoing

responses up to 22 months. In melanoma, peripheral T cell

expansion occurring within 3 weeks of starting ICB treatment

correlates with improved clinical response to ICB 6 months

later.18 Because we observed a clinical response beyond cycle

4 of TCE therapy, and an initial T cell response was already

observed after 30 days, T cell expansion may also be associ-

ated with a clinical benefit in MM. Using recently published un-

biased trajectory inference methods, we observed that CD8+

T cells showed continuous progression along two specific tra-

jectories after TCE treatment.49 Most clones showed early

effector function but eventually reached a terminal memory or

dysfunctional state. Interestingly, CD4+ cells did not contribute

significantly to the observed clonal expansion but are likely also

supporting secondary TCE responses and have been shown to

be vital in maintaining robust antitumor immunity.53,54 However,

most of the CD4+ T cell clones we studied in our dataset were

not clonally expanding in response to TCEs. Importantly, none

of the hyperexpanded clonotypes in responder patients

emerged from exhausted-like CD8+ or CD4+ T cells. This is in

striking contrast to non-responders, where hyperexpanded clo-

notypes post TCEs derived from T cells were fixed in an ex-

hausted-like state. These findings mirror the recent observation

in the transplantable Vk*MYC MM animal model, where large

disease burden and T cell exhaustion were found to be associ-

ated with impaired immunotherapy response.55

Our data furthermore suggest molecular targets whose

modulation may be synergistic with TCEs. We show that naive

CD8+ T cell clones represent an alternative route of TCE-

induced immune response. These cells can be further stimu-

lated by allowing MHC class I:TCR interactions.51 Prior prim-

ing of T cells with tumor-associated antigens or intensive

immunogenic cell death might therefore sensitize tumors to

TCEs. Proteasome inhibitors, such as bortezomib or carfilzo-

mib, have recently been proposed to induce immunogenic

cell death but are not considered prime combination partners

for TCEs.56,57 These data could therefore inform future trial

designs of TCEs in MM. Similarly, we observed potentially im-

mune-preventing interactions with T cells in patients, including

loss of the TCE target antigen BCMA and, surprisingly, loss of

genes of the MHC class I and II complex. These findings merit

further research into acquired resistance mechanisms in

larger cohorts. Overall, our data suggest that induction of

MHC class I in tumor cells, e.g., in irradiated extramedullary

disease, could be of therapeutic benefit.58

A limitation of this and other translational studies investi-

gating dynamics of the TCR repertoire is the longitudinal
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detection of only a limited number of T cells with each sampling

and the corresponding binomial sampling uncertainty. We

aimed to address this by (1) profiling several thousand T cells

that passed quality control in our patient samples, (2) applica-

tion of a bootstrapping approach accounting for sampling error

of the identified TCR sequences to identify significant clonal

contractions and expansions of the TCR repertoire, and (3)

supplementing scVDJ-seq data with deep VDJ-seq of matched

bone marrow and peripheral blood samples pre- and on-ther-

apy, when possible. Statistical methods cannot account for

sampling error without knowledge of the ground truth within

the highly diverse TCR repertoire. Previous studies assumed

that the highly non-uniform abundance of TCR clonotypes

could best be modeled using a Zipf distribution, which might

enable more complete assessments of changes in rare clono-

types.59 However, by limiting assessment to highly frequent

clonotypes in this study, we are confident that we could identify

empirically significant clonal dynamics and gain valuable insight

into longitudinal changes of the disease-perturbed TCR reper-

toire. Nevertheless, profiling the full human TCR repertoire in

several compartments including transcriptional information

therefore remains challenging. Novel high-throughput single-

cell sequencing technologies might, however, facilitate these

approaches in the future.60
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ll
OPEN ACCESSArticle
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by Mirco Friedrich (mfriedri@

broadinstitute.org).

Materials availability
This study did not generate new unique reagents

Data and code availability
d Raw single-cell sequencing data used in this study are publicly available at Gene Expression Omnibus (GEO) under accession

number GSE217245.

d Processed single-cell sequencing data used in this study are publicly available at Gene Expression Omnibus (GEO) under

accession number GSE216571.

d Single-cell sequencing data fromHBMandNDMMpatients that were reanalyzedwithin this study are publicly available at Gene

Expression Omnibus (GEO) under accession number GSE124310.

d Deep VDJ-seq data have been deposited in the Adaptive Biotechnologies immuneACCESS� database (https://doi.org/10.

21417/MJF2022CC).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human patients
This study was approved by the University of Calgary Institutional review board and all patients provided written informed consent for

tumor sequencing and review of patient medical records for detailed demographic, pathologic, and treatment information (Ethics ID:

HREBA.CC-21-0248). Characteristics of each subject included are available in Table S1. Written informed consent was obtained by

all patients and donors prior to this study conformed to the principles set out in the WMA Declaration of Helsinki and in the Depart-

ment of Health and Human Services Belmont Report. The patient specimens collected within this study were collected from an

ongoing prospective clinical trial (NCT03269136), however the correlative studies performed here are from a parallel independently

approved research project by the sponsor (Pfizer grant 68247815 to N. Bahlis). The data therefore do not represent a planned interim

analysis. Ethical approval for the isolation and functional testing of bone marrow aspirates, and peripheral blood for in vitro exper-

iments was obtained from the Heidelberg Medical Faculty Ethics Committee (Reference number S-096/2017).

METHOD DETAILS

Processing of human bone marrow samples
Bone marrow aspirates were 1:1 diluted in preparation buffer (PBS with 0.1% BSA and 2 mM EDTA), and mononuclear cell separa-

tion was performed by density centrifugation (Bicoll separating solution, Biochrom) with diluted bone marrow cells (centrifugation

20 min, 1300g). Cells were carefully aspirated and washed with preparation buffer (centrifugation 5 min at 470g). Red blood cells

were lysed using RCL buffer (155 mMNH4Cl, 10 mMKHCO3, 0.1 mM EDTA) for 10 min at room temperature and bone marrow cells

were washed (centrifugation 5 min, 470g) and resuspended in preparation buffer. Malignant plasma cells were freshly isolated using

CD138 MicroBeads, human (Miltenyi Biotec) according to the manufacturer’s instructions and frozen in 90% FCS (Sigma-Aldrich)

supplemented with 10% DMSO and stored in liquid nitrogen until further use. Non-plasma bone marrow mononuclear cells were

frozen after cell counting at 1 3 107 cells per aliquot in 90% FCS (Sigma-Aldrich) supplemented with 10%DMSO and stored in liquid

nitrogen until further use.

Processing of human peripheral blood samples
Peripheral blood samples were 1:1 diluted in preparation buffer (PBS with 0.1% BSA and 2 mM EDTA), and mononuclear cell sep-

aration was performed by density centrifugation (Bicoll separating solution, Biochrom) with diluted peripheral blood cells (centrifu-

gation 20 min, 1300g). Cells were carefully aspirated and washed with preparation buffer (centrifugation 5 min at 470g). Red blood

cells were lysed using RCL buffer (155 mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA) for 1 min at room temperature and cells were

washed (centrifugation 5 min, 470g) and resuspended in preparation buffer. After cell counting, 1 3 107 cells were frozen per aliquot

in 90% FCS (Sigma-Aldrich) supplemented with10 % DMSO and stored in liquid nitrogen until further use.

Single-cell RNA sequencing and data preprocessing
Our protocol used viably frozen cells that were thawed at 37�C, resuspended in ice-cold PBS and washed twice with cells being

collected by centrifugation at 500g for 4 min. The freezing step had little effect on data quality, major cell-type composition and tran-

scriptome as evaluated by us previously (Tirier et al. 2021). Thawed cells were counted, split in 8 aliquots per patient sample and

separately stained with TotalSeq� hashtag antibodies (BioLegend) and fluorescently labeled antibodies before pooling for flow cy-

tometry. Viable, CD45+ or CD45+ CD3+ cells were isolated by fluorescence-activated cell sorting (Figure S1A) Single-cell capture,

reverse transcription, and library preparation were carried out on the Chromium platform (10x Genomics) with the Single Cell 5ʹ re-
agent v2 kit (10x Genomics) according to the manufacturer’s protocol using 40,000 cells as input per channel. Each pool of cells was

tested for library quality and library concentration was assessed. Each of the final libraries were paired-end sequenced (26 and 92 bp)

on one Illumina NovaSeq 6000 S2 lane. Raw sequencing data were processed and aligned to the human genome (GRCh38) using the

CellRanger pipeline (10x Genomics, version 6.0).

Single-cell transcriptomic analyses
Quality control and normalization

Control datasets for heathy bone marrow and newly diagnosed myeloma were accessed under the GEO accession series

GSE124310 and processed alongside the newly generated datasets.

Single-cell RNA data were processed using the CellRanger pipeline (version 6.0) to the GRChg38 reference genomewith all default

settings. All cells which had unique feature counts over 2,500 (RunB & Control) / 4000 (RunA) or less than 200 (RunB & Control) / 500

(RunA) as well as >10%mitochondrial counts were excluded from the analysis. In addition, genes detected in fewer than three cells

were excluded from downstream analysis. Samples were split in 8 aliquots and separately stained with single TotalSeq� hashtag

antibodies (BioLegend) as well as fluorescently labeled antibodies before pooling for flow cytometry. These fractions were demulti-

plexed and cells were classified as Hashtag+ singlets, doublets or unassigned cells using the HTODemux commandwith default set-

tings (Stoeckius et al., Genome Biology 2018; https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1603-1.

Cells without an assigned hashtag (unassigned cells) or doublets were removed. Subsequently, only cells classified as singlets

(67.8%) were used for further analyses. We provided the corresponding heatmap and quantification under Figure S1B. Gene
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expression was normalized using Seurat’s LogNormalization() and highly variable genes were identified by using the FindVariable-

Features(). VDJ data was added using the combineExpression() function from scRepertoire V.1.3.1. by using the amino acid

sequence (CTaa) for clonotype calling. Downstream analyses of TCE patients was performed on all cells with detected TCR alpha-

and beta-chains (248,478 T cells; 63,374 TCR clonotypes).

Analysis of bone marrow immune cells for cell cell interaction analyses
After preprocessing and QC, all patient datasets were mapped onto the CITE-seq reference of human bone marrow mononuclear

cells (BMNC) using the MapQuery function in Seurat. We used the CITE-seq dataset from (Stuart*, Butler* et al, Cell 2019), which

consists of 30,672 scRNA-seq profiles measured alongside a panel of 25 antibodies from bone marrow. The performed reference

mapping using default parameters by finding anchors between each of our datasets with the query dataset via FindTransferAnchors()

according to the published vignette (https://satijalab.org/seurat/articles/multimodal_reference_mapping.html). T cells were identi-

fied based on CITE-seq reference mapping.

Integration of TCE patient datasets and timepoints
T cells from CD3+ sorted samples subsetted based on the CITE-seq reference above were analyzed and integrated by using the Har-

mony V0.1.0 package according to the published vignette. Normalization was done by LogNormalize() and FindVariableFeatures

generating 2500 Variable features. Subsequently batch effect-associated features as well as immune-receptor variable genes

(JUN|FOS|RP|ZFP36|EGR|HSP|MALAT1|XIST|MT-|HIST|TRAV|TRAD|TRAJ|TRBV|TRBD|TRBJ|TRGV|TRGD|TRGJ|TRDV|TRDD|

TRDJ|IGHJ|IGHV|IGKC|IGKJ|IGKV|IGLC|IGLJ|IGLV) were filtered from the variable features for subsequent ScaleData() and

the RunPCA function with npcs = 50. Integration of the respective patient_timepoint datasets was achieved by using the

Harmony V0.1.0 package with the following function and parameters: RunHarmony(object ,c(‘‘orig.ident’’, ‘‘experiment_run’’,

max.iter.harmony =20, max.iter.cluster = 40, dims.use = 1:20, epsilon.cluster = -Inf, epsilon.harmony = -Inf). The generated

Harmony reductions were used for further clustering. Hamony Dims 1:20 were used for FindClusters(..., resolution = c(0.5,

0.7, 0.9, 1.0, 1.2, 1.4, 1.5, 1.6, 1.8, 2.0)), FindNeighbors() and RunUMAP (Figures S2A and S2B).

RNA velocity analysis of the in vitro data
Spliced, unspliced and ambiguous expressionmatrices were generated for the in vitro datasets with the tool velocyto.py v0.17. Using

the mapped annotations of cell types, all cell types annotated as CD8+ were included in the analysis. For quality control, only genes

with a detected exonic and intronic read in a minimum of 5 cells were selected for downstream analysis. Based on this subset, con-

sisting of 13,893 cells, single cell momentums and velocities were calculated with pp.moments and tl.velocity using the generalized

dynamical model as implemented in the package scVelo v0.2.4. A UMAP was generated for this subset of cells retaining previously

defined clusters. The stream of velocities was plotted onto the embedding using the function pl.velocity_embedding_stream. A tran-

sitionmatrix of T-cell clusters was calculated using themethods implemented in cellrank v1.5.1. A pseudotime estimation was based

on a CytoTRACE kernel, which enabled the analysis of cellular hierarchies. Macrostates were inferred using a transition matrix based

on a velocity kernel and a connectivity kernel. Initial and terminal states were defined using the GPCCA-based workflow. The fate

probabilities for all states were calculated for cells and driver genes were identified. These states and the fate probabilities of all cells

in the clusters were visualized using directed partition-based graph abstraction (PAGA) implemented in cellrank as the function

tl.paga. Finally, a circular embedding was generated using the function pl.circular_projection.

Individual clonotype dynamics
The in vivo VDJ .seq data for each patient was used to link the CTaa status to single cell data and annotate clonotype abundance.

Shared clonotypes between the timepoints were paired and independent as well as paired clonotypes were analyzed. First, the rela-

tive abundance of each clonotype was assessed and we accounted for differences in captured clones in each timepoint by binomial

sampling. The fold change for each clonotype size was then calculated. We then applied a bootstrapping-based approach, sampling

1000 times from each combined dataset per patient, stratified for cell number found in each timepoint, to calculate an empirical con-

fidence interval for the clonotype frequency and fold change between the two captured timepoints. The bootstrapping analysis was

implemented in R using the tidymodels suite of packages and the bootstraps function from the rsample package. By calculating an

empirical distribution function (eCDF) for clonotype change for each patient, each individual clonotype change was categorized

based on a clonal dynamic stronger than 80% of the overall clonal dynamics. Clones with a frequency above 1% before or after

TCE were defined as large. Relevant expansions or contractions of a clone in each patient were calculated using the bootstrap-

ping-based eCDF. If a clone was above or below the eCDF-based threshold in more than 95% of cases of the bootstrapping, the

null hypothesis was rejected, thus the clone was defined as having undergone a significant change in clonality. To control for multiple

hypothesis testing, we corrected all calculated p-values using the Benjamini-Hochberg procedure, which adjusts p-values based on

the number of tests being performed in each patient sample to control the FDR. After grouping clones based on their significant clonal

dynamic, universal patterns across patients were revealed by phenotype association. The association of phenotype with clonal dy-

namic was performed based on a majority vote of transcriptionally defined cluster associations for all cells making up each identified

T cell clone. Expanding and contracting clones were then summarized for all found T cell subtypes and enrichment was tested be-

tween patients using the downstream statistical methods as outlined in the respective figure legends.
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Reference-based mapping of CAR-T cell-treated patient data to in vivo dataset and analysis
CAR-T datasets were preprocessed consistent to in vivo datasets according to the steps described above. Mapping of the individual

query CAR-T cell-treated patient datasets onto the TCE in vivo referencewas done using the symphony package V.0.1.0 following the

published vignette, using the log-normalisation approach: https://github.com/immunogenomics/symphony/blob/main/vignettes/

Seurat.ipynb Default settings were used for mapQuery(), buildReferenceFromSeurat() and knnPredict.Seurat(). The reference Seurat

object was constructed from the in vivo patient datasets using the same parameters as used in the initial analysis described above.

Module scores of T cell dysfunction and cytotoxicity (derived from Li et al., Cell 2019)

T cell dysfunction score
"LAG3","HAVCR2","PDCD1","PTMS","FAM3C","IFNG","AKAP5","CD7","PHLDA1","ENTPD1","SNAP47","TNS3","CXCL13","RDH10",

"DGKH","KIR2DL4","LYST","MIR155","RAB27A","CSF1","CTLA4","TNFRSF9","CD27","CCL3","ITGAE","PAG1","TNFRSF1B",

"GALNT1","GBP2","MYO7A"

T cell cytotoxicity score
"FGFBP2","CX3CR1","FCGR3A","S1PR5","PLAC8","FGR","C1orf21","SPON2","CD300A","TGFBR3","PLEK","S1PR1","EFHD2",

"KLRF1","FAM65B","C1orf162","STK38","SORL1","FCRL6","TRDC","EMP3","CCND3","KLRB1","SAMD3","ARL4C","IL7R","GNLY"

Cell-cell interaction analysis of human bone marrow-associated immune cells
CellPhoneDB v2.1.7 was used with the default parameters. Gene symbols were converted to ENSEMBL IDs using the clusterProfiler

R package v4.0.526. CellPhoneDB analysis and visualization was run from the command line using default settings. The extraction of

relevant celltype interactions and genes was achieved using the tidyverse v1.3.1 R package collection in R v4.1.0. In order to quantify

the association between a given timepoint and the expression of ligand and receptor genes we utilized a random forest classifier. For

improved robustness, cross-validation with 10 folds was used. The resulting model was optimized for robustness using the caret

package in R.

Deep TCRB sequencing
Genomic DNA was isolated from peripheral blood samples using QIAamp DNA isolation kit (QIAGEN) as per the manufacturer’s in-

structions. TCR beta chain (TCRB) deep sequencing was performed on purified DNA from isolated bone marrow or blood mononu-

clear cells to detect rearranged TCRb gene sequences using hsTCRBKit (Adaptive Biotechnologies) according to themanufacturer’s

protocol. The prepared library was sequenced on an Illumina MiSeq by the Genomics & Proteomics Core Facility, German Cancer

Research Center (DKFZ). Data processing (demultiplexing, trimming, gene mapping) was done using the Adaptive Biotechnologies

proprietary platform as previously described (Platten et al., 2021). ImmunoSEQ data were exported, supplemented with metadata

and analyzed with R using the immunarch 0.7.0 package infrastructure. Repertoire overlap was calculated using Morisita’s or Jac-

card overlap indices. Estimation of repertoire diversity was performed using the repDiversity function. Longitudinal clonotype tracing

was calculated with the trackClonotypes function.

Functional TCE testing in in vitro bone marrow cultures
Primary human co-cultures

Bonemarrowmononuclear cells were isolated as described above. CD138+ cells (live/CD45-/CD138+) andCD3+ (live/CD45+/CD3+)

cells were isolated by fluorescence-activated cell sorting (FACS) on a BD FACSAriaTM Fusion cell sorter. Malignant plasma cells and

T cells were counted and co-cultured at a 1:1 ratio in ImmunoCult-XF T Cell Expansion Medium (STEMCELL technologies) supple-

mented with 50 IU/ml recombinant human IL-2, 25 ng/ml IL-7 and 25ng/ml IL-15. From each well, 10.000 T cells were sampled for

scRNA/VDJ-seq as described above to generate T0 data. Plasma cells were verified to express BCMA by flow cytometry. A recom-

binant anti-BCMA x anti-CD3 CrossMab bispecific antibody was used to stimulate T cell activation by malignant plasma cells. To

assess HLA class I dependency of observed T cell reactivity, co-cultures were incubated with anti-HLA class I antibody (W6/32).

To detect T cell clones reactive against common viral epitopes, T cell only cultures were incubated with CEFT pool,

120nmol >70% (JPT Peptide Technologies). Every 3 days, fresh medium with 50 IU/ml recombinant human IL-2, 25 ng/ml IL-7

and 25ng/ml IL-15 was added to the culture. After 7 days of co-culture, all cells were counted, collected by centrifugation at 500g

for 5min and lysed in DNA lysis buffer and genomic DNA was isolated using QIAamp DNA isolation kit (QIAGEN) as per the manu-

facturer’s instructions. Deep VDJ-seq was performed as described above to generate T7 data.

Reference-based mapping of in vitro data to in vivo dataset and analysis
In vitro datasets (To) were preprocessed consistent to in vivo datasets according to the steps described above. Mapping of the in-

dividual query in vitro single cell datasets onto the in vivo reference was done using the symphony package V.0.1.0 following the pub-

lished vignette, using the log-normalisation approach: https://github.com/immunogenomics/symphony/blob/main/vignettes/

Seurat.ipynb Default settings were used for mapQuery(), buildReferenceFromSeurat() and knnPredict.Seurat(). The reference Seurat

object was constructed from the in vivo patient datasets using the same parameters as used in the initial analysis described above.

TCR overlap analysis between single cell and bulk TCRseq datasets was performed using the R Version 4.0.0 environment especially

using the dplyr package V.1.0.7. Clonotype overlap was identified by the amino acid sequence of the respective CDR3 region. For
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deep VDJ-seq and single-cell VDJ-seq comparisons only the TCR beta chain was used. Only TCR clones successfully detected and

mapped in both in vitro datasets (T0 scRNA/VDJ-seq and T7 deep VDJ-seq) were used in downstream analysis.

Data visualization
Tabular data from single-cell sequencing analyses above were processed using the tidyverse suite of packages [https://CRAN.R-

project.org/package=tidyverse] and visualized in the R programming environment using the ggplot2 package. Data from all other

analyses were visualized using GraphPad Prism 9.0. Figures were produced using Adobe Illustrator 2022. Graphical Abstract was

created with BioRender.com. Density Plots were generated using the scRepertoire package V.1.3.1 using the getCirclize(..., clone-

Call = "CTaa", groupBy = "timepoint", proportion = FALSE) and clonalOverlay(freq.cutpoint = 0.01, bins = 25,...) functions. The top

TCRs were selected based on the relative frequencies for each clonotype calculated by the scRepertoire package. DotPlots were

subsequently created using the ggplot2, tidyverse and dplyr packages.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data are represented as individual values or asmean ± SEM, as indicated. Group sizes (n) and applied statistical tests are indicated in

figure legends. Significance was assessed by either unpaired t-test analysis, paired t-test analysis, or two-way ANOVA analysis with

multiple hypothesis testing correction as indicated in figure legends. All reported p values are two-tailed. All analyses were performed

using either R v4.1.0 (www.R-project.org) and Bioconductor v3.4 or GraphPad Prism 9.0.

Due to the nature of this study, sample size determination was not applicable, as all available samples were included in this study.

All cells passing QC (Figures S1 and S2 and Table S2) were included in downstream analyses on a single-cell basis. For functional

experiments, bone marrow samples were blinded to the experiment performers.
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